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THE NUMERICAL SOLUTION OF THE SINGULAR INTEGRAL EQUATION

FOR DIFFRACTION BY A SOFT STRIP

Introduction

Very few problems involving scattering of a wave by an obstacle can be

solved exactly. The object of the present paper is to examine a method for

numerical solution of the integral equation for diffraction by an obstacle

for which solutions are available, namely a strip, with a view to the even-

tual application of the method to scattering by obstacles of more general

shape.

We consider the problem of scalar two-dimensional diffraction of the

incident wave

Seik(x cos 8+ y sin e)

by a soft strip lying in y = 0, -a • x ; a. It is requiredto solve the

steady-state wave equation

•2t t 2t
- + - + k t2 = 0

where t = 4i + 0, is the total velocity potential consisting of the sum of

the incident and scattered potentials 0. and 4 respectively. The scattered

potential must satisfy a radiation condition at infinity. The boundary con-

dition on the strip is

ýt = O, y =O, -a 9 x a,

or 4) = _ik x cos E y = -a ; x ; a.

By superposition of simple sources of strength f(x) per unit length on the

strip, the scattered potential at any point (x,y) of space is given by

i f() H(')(k[(x - ý)2 + y 2 ]2 ] d. (2)
-a 0
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If we let (xy) tend to a point on the strip we obtain, on applying the

boundary condition (I), an integral equation for the unknown function f(x):

Sa f( H H) (k 1x - I) dý =eik Cos a, (-a ; x ; a). (3)
Sa

Of the voluminous literature on this subject we quote the exact Mathieu

function solution of Morse and Rubinstein (7), the low-frequency expansions

of Millar (5) using an integral equation method of Bm)uwkamp, and the high-

frequency asymptotic expansions of Millar (4).

Low-frequency expansions have been obtained by a variational technique,

using analytical methods, by De Hopp (3). An estimate of the scattering

cross-section for normal incidence, using a crude constant approximation for

the source-strength f(x) on the strip, has been given by Erdelyi and Papas (2).
/

The present paper can be regarded as an extension of the method of Erdelyi

and Papas using the method described in (8). The difficulty in applying a

variational principle to scattering by obstacles with sharp edges is that

the unknown functions have singularities at the sharp edges. If we attempt

to use trial functions with the correct singularities at the edges we find

that it is difficult to perform the necessary integrations. The integra-

tions can be performed for constant trial functions, but these do not

simulate the required singularities. In this paper we adopt the following

compromise. To simulate the function

f(x) = 1/4(a2 - x2),

we use the approximation

r
f(x)= ] -p< x <p,

p< Ixl <a,



where , p p are determined from the variational principle. It is found by

the method described later that typical values for normal incidence and low

frequency are P/a = 5, p = 0.92.

2 The variational principle

Consider the variational expression

T(E,F) = E(x) g(x) dx + F(x) h(x) dx

- K(x,ý) E(x) F(ý) dx dý , (4)

where g, h, K are known functions, and E, F are to be determined so as to

extremise I(E,F). We set

E(x) = e(x) + 8"q(x), F(x) = f(x) + Eý(x) , (5)

where we assume that e, f are the functions which we wish to find, namely the

functions which extremise I(EMF). In the usual way i(x), ý(x) are arbitrary

functions. On varying the parameters 8, , the functions E, F vary round the

required functions e, f. On inserting (5) in (4) we see that

I(E,F) = I(e,f) + A + B,

where A is first order in 5 and e, and B is second order:P P
A = e ý(x) [h(x) - K(ý,x) e(ý) dfl dx

a a
+ 1 i(x) (g(x) - K(x,ý) f(ý) dl dx.

If I is stationary for variations of e, 5 round zero, the coefficients of

c8 8 are separately zero. Since ý(x), ý(x) are arbitrary, e(x), f(x)

satisfy the integral equations



K(x,ý) f(ý) da = g(x) , (a i5 x g ) (6a)

]• K(ý,x) e(ý) dý -- h(x) ,(C6 ;ý x gi• (6b)

If e, f must satisfy these equations then we see from (4) thatP, P
I(e,f) e(x) g(x) dx h(x) f(x) dx (7)

Suppose that we can guess the shape of e(x), f(x) so that we can

approximate e(x), f(x) by the expressions

E(x) = C"' (x) F(x) = DV(x)

where are known functions, and C, D are constants which have to be

determined. If these expressions are substituted in (4) we can determine

optimum values for C and D by setting T. = TD = 0. This gives

c~a(,•)' D A ',•)'

where we use the notation

(p,q) = p(x) q(x) dx,

A(p,q) 6K(x,ý) p(x) q(ý) dx dý.

Application of the variational principle to diffraction by a strip

We now apply the results obtained in the last section to the problem of

diffraction by a strip. By using the asymptotic expansion of the Hankel

function in (2) it is readily seen that the far-field scattered by the strip

is given by



1 ei(kr+lit)

A(e,e) (81ckr)-2 ei 4

where

A(e,G) = - f(ý) e-ik~cOse d (9)-a

In these expressions we use polar coordinates (r,e) and write A(e,G) to

remind us that A depends on both the angle e at which we observe the diffracted

wave, and the angle 8 of incidence of the incident wave (since f(g) depends on

a). As shown by several authors (for instance, de Hoop (3)) the scattering

cross-section per unit width of the strip for a wave incident at angle 8 is

given by

t(8) - (1/4ka) Im (A(6,E)) (i0)

We obtain a variational principle for A(O,O) by first of all identifying

the integral equation (3) with (6a). This indicates that f(ý) can be taken as

the same function in both equations and we can set

K(x,ý) 1 - H( kx g(x) ikx cos e (Ia)g

If now we identify minus the expression in (9) with (7) we see that

h(x) = e-ikx cos e, (llb)

and from (6b) the function e(x) must satisfy the integral equation

- a e(ý) H(1) (k Ix - ý1) dý = e cos G (12)
Lf-a

From (7), (9) and the above identifications we see that the exact value of

A(e,e) is equal to -I(e,f) so that from (8) the variational expression for

A(e,e) is
ikxcos _a -ikxcos 0

a.(x) e dx J(x) e dx
A(e,e) fa -aa aa

1i f f PHo) (k Ix - ( ) J(x)J ) dx dt
-a I-a
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This is the form of the variational principle used by other writers on this

subject, for example Morse and Feshbach (6) and de Hoop (3).

For our purposes it is more convenient to proceed in the following way.

Consider the integral equations

a
K(Ix - t j) f(ý) dý = g(x) , (-a :- x _ a), (13a)

-a

a K(Ix - ý 1) e(ý) dý = h(x) , (-a _- x _ a), (13b)
-a

where we shall eventually make the identifications (11), with KI x - gi)

- K(x,•). We introduce, using an obvious notation for even and odd functions,

f+( = ½ (f(0) + f(-0) , g+(x) = 2 (g(x) + g(-x)) , (14a)

f(•) = ( (f(0) - f(-0)3 , g(x) = ½- (g(x) - g(-x)3 . (14b)

On changing the sign of x in (13a) we obtain

a

faK( Ix + )f(~ dg g(-x), (-a :- x :- a). (15)

On adding and subtracting (13a) and (15) we readily obtain the following pair

of integral equations which are together equivalent to (13a):

aoK +(x,•) f + () dý g +(x) 06a

0

a

fo K_(x ,•) f_() d= g (x) (16b)

where

K+(x,g) K(tx - ý 1) + K(x + 0), (16c)

K_(x,ý) = K(Jx - K(x + •). (16d)
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In an exactly similar way, equation (13b) can be replaced by the following

pair, using notations analogous to (14):

a Ko K+(x'ý) e + () dý = h +(x) (17a)

0

a

on cmpaing ( x6a , ( ) with(6a) b we ob=i from) (17b)aiaio

On comparing 0i6a), (17a) with (6a,b) we obtain from (4) a variational

expression which we shall denote by I+ (E+, F+) where E+ and F+ are approxi-

mations to e+ and f+. The exact value of this expression, from (7), (14), is'.

a a
I+(e+,f+) e+(x) g+(x) dx h+(x) f+(x) dx

0 0

4f (e(x) + e(-x)) (g(x) + g(-x)] dx

0

fa4 (e(x) g(x) + e(x) g(-x)) dx. (18a)
-a

Similarly from (16b), (i7) we can derive a variation expression which we

denote by I_(E-,F_) where E-, F_ are approximations to e_, f-. The exact value

of this expression is readily shown to be

a
I_(e ,f_) = (e(x) g(x) - e(x) g(-x)) dx (18b)

-a

On adding (18a,b), and remembering that A(e,G) is equal to -I(e,f) whose

value is given in (7) we see that

A(e,e) = -2 (I+(e+,f+) + I_(e_,f_)) (19)

The variational expression for I+ is
a a

I+ f +(x) g+(x) dx + F+(x) h+(x) dx

I a a

- o K + K(X,) E +(x) F +(ý) dx dý (20a)
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where from (01)

g+(x) cos (kx cos e), h+(x) = cos (kx cos e). (20b)

From this point onwards it is convenient to set a = I. We also substi-

tute K for k to remind us of this assumption.

We take the trial functions F+ E to be step-functions:

F+(x)-- (,•, -p < x < p, E+(x) = 7 -q < x < q,
U ,/ (21)

ip• < (xi < CI • 5 < Ix I< 1

Substitution in (20a) gives

I =D+ + 52+ Cl + PC2 - ayAl - coA 1 2 - PTA2 1 - P5A2 2  (22)

where from (20b)

pq sin (.Kq cos 8)+(x)dx Kcos8

0

D2 = g(x) sx - in (rc cos 6) - sin (K q cos e)

q cose

Similarly

Cl _ sin (1:p cos o) C sin (. cos e) - sin (rp cos e)
C1  cos- k. cos 0

Also
p q p 1

Ali o K+(x,•) dx d, A1 2  K+(x,ý) dx d,
0 0 f01 q

A2 1 = K+(xA) dx dý , A2 2 = K+(,•) dx d.

When K+(x,? ) has the special form given in (16c) these double integrals

can be simplified by means of the following results (cf. Noble (8)):
b d
I K(Ix dx) d dý - J((b - c1) + J(ja - d) - J(lb - dl) - J(la - ci),

a C

b d
•abfoK(x + d) x dý = J(b + d) + J(a + c) - J(b + c) - J(a + d),aK c
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where

J(a) = J (a -- u) K(u) du.
0

In our case K(u) 1 ~i H(l)(ru) and it is convenient to express all integrals

in terms of

L(z) = z-v H(1)(v) d
oz ) z[ vo

=[ I Z 0(u) du -JI(z)] + { 11du-Y~)
00

We have 4i 2 J(a) L(ja)

and we find

4i2 All = L(['(p + q)- L(Kip - qj),

4iK2 A1 2 = L(.(1 + p)] - L•K(I - p)) + Lf Kip - q I- LfiA(p + q)),
4K 2 A2r = L(K(1 + q)) -L(K(1 - q)) + Lf.ip - qj3- L(K.(p +

4i,2 A2 2 = L{2i_.) + Lf(K(p + q)) - L(,OIp - q\3 + L(x.(l - p))

L(:K(1 + p)) + L.•(1 .K . q)) - L(K(1 + q))

The optimum values of a, P, y, 5 in the variational expression (22) for

I+ are determined by setting the derivatives of I+ with respect to these

parameters equal to zero. This gives two sets of two simultaneous equations

for 7, 5 and a, P:

A1 1 y + A1 2 5 = Cl1

A2 1 Y + A2 2 b = C21

All a + A21 p = D1

A 12 C6+ A22 P = D2.

If these values of a, y y5 S are used, equation (22) gives

I+ = yD, + 6D 2 =aC + PC2

= (A2 2 C1 DI - A12 C2 DI - A2 1 Ci D2 + A.1 C2 D2 )/A , (25)
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where A = A 1I A2 2 - A1 2 A2 1 .

Next consider the variational expression I derived from (16b), (17b):
a a

1 = E(x) g_(x) dx + F(x) h(x) dx
0 0

_ •(x,) E_(x) F_() dx dg (24)
00

where

g(x) = i sin (kx cos e), h(x) - i sin (kx cos o).

We again set a = 1, replace k by K, and take the trial functions F_, E to be

odd step-functions:

F (x) = -c, -1 < x < -p, E (x) = -•, -1 < x < -q

0 , 1Ix < p) 0, ixj < q, (25)

a•, p<x< 1 , q<x< 1.

Then (24) becomes

I =PP +cQ- cB (26)

where

P i Cos (Kp cos e) - cos(K cos e)
iccos

Q = - i fcos(.Kp cos e) - cos (t cos e))
Scose

1 1

B K_(x,ý) dx dý.
p q

By following the procedure explained previously in connection with the Aij

we can show that

.4i.K2 B = L("ý(I + p)) + L('K(1 - p)) + L('m(1 + q)) + Lf•(i - q))

- T,{K(p + q)) - L('ilp - qIj - L(2.r).
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On setting the derivatives of I- with respect to a, p equal to zero we find

the optimum values of these parameters, and substitution in (26) gives

I = P = c Q= PQ/B. (27)

Numerical results for the scattering cross-section

The numerical results reported below are confined to the scattering

cross-section per unit width of the strip, t(S), defined in (10) above.

We then require only A(Oe) so that we can set 0 = e, p = q, in the

expressions in the last section. On using (10) and (19), remembering that

we now set a = 1, k = K in (10), we have

t(e) = _I Tm (I+ + I-) = Re(J+ + J), say,

where we can show from (23), (27) that

J+= - ½(i/*) I+

2(L(2x)sin2 (kp cos E)+2M(.K,p)sin(!tp cos e)sin(K cos e)+TL(2 )sin2 (K cos e)1
K cos'G (L(2 i) L(2")p) - ••,p))

2 Jsin2(K cos 8) + [L(2K)sin(ip cos e)-M( ,sin(e• cos e)] 2

K cose8 T('*K) T((r) T,(21K) - (Kp)-

where we have separated out the dominant part of J+, and

M(K,p) = L(ri( - p)) - L(s(1 + p)). Also

= - ½(i/•) I_

2cos (p)) cos K) - cos (2 cos
- eosGE (2[L K(l+p)) + L(K(1 - p)J] - 1(2() - (2 "

The optimum value of p, which is so far undetermined, is found

empirically by using the variational property of the two above expressions.

Thus for a given value of r and e, the quantity J+ is evaluated for various

p, and the required value of p is that for which J+ is stationary. A diffi-

culty arises since J+ is complex and the optimum value of p may not be the
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same for the real and imaginary parts. Fortunately it turns out that the

optimum values of p are not essentially different when K is not too large,

as illustrated in a numerical example below. The optimum value of p need

not of course be the same for J and J since these are obtained from inde--+

pendent integral equations.

The above calculations to determine the optimum value of p were carried

out for various angles of incidence 8 = 0(10)90 degrees and K = 0.4(0.4)2.8.

The results were similar for all angles of incidence and figures for a

typical example, namely 0 = 500, are given in Tables 1-4. For small K the

optimum value of p for both the real and imaginary parts of J+ was approxi-

mately 0.92 as shown in Tables I and 3. The optimum value increases

slightly as • increases to 2.0, and then increases fairly rapidly to unity

as K increases from 2.0 to 3.0. The optimum value of p for the imaginary

part of J+ increases slightly more rapidly than the optimum value for the

real part but no significant error is involved in the assumption that p is

a constant equal to 0.92 for all K between 0 and 2.0. For small K the

optimum p for both the real and imaginary parts of J was about 0.68. The

optimum value for the imaginary part increases, and for the real part it

decreases, as p increases, but the estimates of the real and imaginary

parts of J are not seriously in error if we assume p constant equal to

0.68 for all r between 0 and 2.0.

Some typical results for t(e) are plotted in Figures 1 and 2, where the

optimum values of p for the real parts of J+ and J have been used. In

Figure 1 our results for t(G) are plotted against K for K= 0.4 to 2.0, and

0 = 0, 30, 60'. Also in Figure 1, for the sake of comparison, are the exact
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TABLE 1

Values of ReJ +] for e 500, K' = 0.4 to 2.8, p = 0.88 to 0.96

0 o.88 0.90 0.92 0.94 o.96

0.4 f 1.1278 1.1284 1.1286 1.1281 1.1265

0.8 o.8824 0.8829 o.8831 o.8828 0,8817

1.2 0.7362 0.7365 0.7567 0.7367 0.7362

1.6 0.6094 0.6095 0.6097 0.6098 0.6097

2.0 0.4933 0.4932 o.4930 o.4930 o.4930

2.4 0.3932 0.3924 0.3916 0.3907 0.3898

2.8 0.3161 0.3143 0.3121 0.3094 0.3o60

TABLE 2

Values of Re[J ] for e 500, r = 0.4 to 2.8, p = 0.62 to 0.70

ý, 0.62 0.64 0.66 0.68 0.70K1
0.4 0.00559 o.0o561 o.oo562 o.0o563 o.00562

o.8 0.0350 0.0351 0.0352 0.0352 0.0351

1.2 0.0909 0.0911 0.0912 0.0912 0.0910

1.6 o.1656 0.1659 o.1659 0.1657 0.1652

2.0 0.2486 0.2488 0.2485 0.2479 0.2468

2.4 0.3292 0.3289 0.3279 0.3262 0.3238

2.8 0.3970 0.3950 0 03920 0.3877 0.3820
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TABLE 3

Values of Im[J +] for a = 50', K = 0.4 to 2.0, p = 0.88 to 0.96

K• o.88 0.90 0.92 0.94 o.96

o.4 -1.2512 -1.2513 -1.2513 -1.2512 -1.2509

0.8 -0.5909 -0.5906 -0.5905 -0.5905 -0.5907

1.2: -0.3078 -0.3074 -0.3071 -0.3070 -0.3073

1.6 -0.1541 -0.1536 -0.1532 -0.1529 -0.1529

2.0 -0.0741 -0.0737 -0.0733 -o.0728 -0.0724

TABLE 4

Values of Im[J_] for 8 = 50 , K 0.4 to 2.0, p = 0.62 to 0.70

"o.62 o.64 o.66 o.68 0.70

O.4 -0.1080 -0.1082 -0.1083 -0.1084 -0.1084

0.8 -o.1918 -0.1922 -0.1924 -0.1926 -0.1925

1 .2 -0.2486 -0.2492 -0.2496 -0.2499 -0.2500

1.6 -0.2779 -0.2788 -0.2796 -0.2803 -0.2808

2.0 -0.2814 -0.2830 -0.2846 -0.2862 -0.2878
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solutions of Morse and Rubinstein (7) for 0 = 00, and the curves of Millar

(4_) and (5). It should be noted that Millar's curves consist of a low-

frequency approximation extending up to K Z 1, and a high-frequency approxi-

mation extending down to K - 1.25, These two approximations do not match

exactly. In Figure 2 our results for t(a) are plotted against K going from

S= 0.4 to 4.0 for normal incidence (a = 900). Also included are the exact

solutions of Morse and Rubinstein, Millar's solutions for normal incidence,

and the solution of Erdelyi and Papas (2). Our results agree well with the

exact solution of Morse and Rubinstein for 0.4 < K < 3 in Figure 2 and

0.4 < K < 2 in Figure 1. Our results are also in fair agreement with

those of Millar, the agreement being worst at grazing incidence where in

any case Millar's low- and high-frequency approximations do not join

smoothly in the region I < r < 1.25.

The solution of Erdelyi and Papas for normal incidence given in

Figure 2 is obtained from the variational principle which is used in this

paper but a trial function is assumed which is simply constant over the

whole strip. The trial function of Erdelyi and Papas is obtained by

taking

p -- q = 1, F +(x) = E +(-) < X < I)

in equation (21) above. We have already mentioned that the optimum value

of p for the even solution tended to unity as K increases from 2.0 to 3.0,

so that the graph of our results in Figure 2 tends to the solution of

Erdelyi and Papas for K > 3.0. Unfortunately the asymptotic behaviour

of the Erdelyi and Papas solution does not agree with that of the exact

solution as K tends to infinity. However our results show a considerable
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improvement over those of Erdelyi and Papas for K less than about 3.0.

The trial functions used in this paper are quite crude in that they

are step-functions with, effectively, only one step. In spite of this

the results are remarkably good. It is also noteworthy that empirically

it appears that no great loss of accuracy is involved in computing the

scattering cross-section if it is assumed that for all E0 we have

p = q = 0.92 for the even function (21) and p = q = 0.68 for the odd

function (25), in the range 0 < K < 2.5. It is the chief conclusion of

this paper that good results can be obtained with these simple trial

functions. This encourages the hope that it may be possible to apply

the same method to calculate the scattering by objects of more compli-

cated shapes in the awkward wavelength region where the wavelength is

comparable with the size of the obstacle.
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